

Text query

Gallery of motions

• A person is stretching legs

Ranking of gallery motions by similarity with the text query

Qualitative results

On the HumanML3D^{⁻ test set (motions unseen during training)}


```
https://mathis.petrovich.fr/tmr
```

TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion Synthesis Mathis Petrovich^{1,2} Michael J. Black² Gül Varol¹

¹ IMAGINE, École des Ponts ParisTech, France ² Max Planck Institute for Intelligent Systems, Tübingen, Germany

TMR: Text-to-Motion Retrieval

Key components

- Contrastive learning using InfoNCE
- Motion synthesis auxiliary loss
- Filtering negatives (when the texts are too similar)

References

TEMOS: Petrovich et al. Generating diverse human motions from textual descriptions, ECCV 2022 InfoNCE: van den Oord et al. Representation learning with contrastive predictive coding, arXiv 2018

HumanML3D: Guo et al. Generating diverse and natural 3d human motions from text, CVPR 2022

- the localization ability emerges from our model.