motiont par

Use case: localization

- Trained on HumanML3D motion-text pairs Decoder Decoder

TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion Synthesis

 Mathis Petrovich ${ }^{1,2}$ Michael J. Black ${ }^{2}$ Gül Varol ${ }^{1}$${ }^{1}$ IMAGINE, École des Ponts ParisTech, France ${ }^{2}$ Max Planck Institute for Intelligent Systems, Tübingen, Germany

Ecole des Ponts
École des Ponts ParisTech

s .

TMR: Text-to-Motion Retrieval

Key components

- Contrastive learning using InfoNCE ${ }^{\square}$
- Motion synthesis auxiliary loss
Key components
- Contrastive learning using InfoNCE ${ }^{\square}$
- Motion synthesis auxiliary loss
- Motion synthesis auxiliary loss
- Filtering negatives (when the texts are too similar)

Comparison to state of the art

Ablations

ces

- Similarity over a sliding window indicates that the localization ability emerges from our model. .- Max similarity rom
- Similarity

Filtering negatives

- Similarity

Walk forward
 assomomogogoud athees Y
 I.

References

Introduction
Goal Searching for motions with natural language

Qualitative results

tps://mathis

