

TEMOS: Generating diverse human motions from textual descriptions

¹LIGM, École des Ponts, Univ Gustave Eiffel, CNRS, France

²Max Planck Institute for Intelligent Systems, Tübingen, Germany

Paper, video, PyTorch code, pretrained models available online

Mathis Petrovich^{1,2} Michael J. Black²

ParisTech

https://mathis.petrovich.fr/temos

Introduction

Goal: Given a textual description, the task is to generate multiple diverse 3D human motions.

Prior work: Deterministic (generating only one motion), jittery, complex models and losses

Solution: Encode the text into a gaussian distribution, use a non-autoregressive Transformer VAE

Contributions: • Novel cross-modal variational model that can produce diverse motions

State-of-the-art performance

Extensive ablation study

A man walks in a circle clockwise. $z \in \mathcal{N}(0,1)$

TEMOS: TExt-to-MOtionS Supports both skeletons and SMPL body motions Non-autoregressive architecture • Motion-level motion encoder \mathcal{M}_{enc} Motion Decoder \mathcal{M}_{dec} • Sentence-level text encoder \mathscr{T}_{enc} Training Sampling from $\mathcal{N}(\mu^M, \Sigma^M) \longrightarrow z^M$ - Sampling from $\mathcal{N}(\mu^T, \Sigma^T)$ • Reconstruction loss on the motion-to-motions branch (left) Reconstruction loss on the text-to-motions branch (right) Text Encoder \mathcal{T}_{enc} Motion Encoder \mathcal{M}_{enc} Cross-modal losses to encourage a joint space between motion and text $H_1 \cdots H_f \cdots H_F$ μ_{token}^{m} Gaussian priors to regularize the joint latent space **DistilBERT** Inference Only the text-to-motions branch (right)

KIT Motion-Language Dataset

- 3911 motions sequences with 6353 sequence level sentence annotations
- Processed with MMM framework, as in prior work

Ability to sample multiple motions

given a single textual description

MMM joint coordinates

Processed with SMPL (correspondance with AMASS)

walking in

Qualitative results

Ablation study: architecture and losses

			Average Positional Error \downarrow				Average Variance Error \downarrow			
			root	glob.	mean	mean	root	glob.	mean	mean
Arch.	\mathcal{L}_{KL}	\mathcal{L}_{E}	joint	traj.	loc.	glob.	joint	traj.	loc.	glob.
GRU	$KL(\phi^T, \phi^M) + KL(\phi^M, \phi^T) + KL(\phi^T, \psi) + KL(\phi^M, \psi)$	√	1.443	1.433	0.105	1.451	0.600	0.599	0.007	0.601
Transf.	$KL(\phi^T, \psi)$ w/out \mathscr{M}_{enc}	X	1.178	1.168	0.106	1.189	0.506	0.505	0.006	0.508
Transf.	$KL(\phi^T, \phi^M) + KL(\phi^M, \phi^T) + KL(\phi^T, \psi) + KL(\phi^M, \psi)$	X	1.091	1.083	0.107	1.104	0.449	0.448	0.005	0.451
Transf.	$KL(\phi^T, \psi) + KL(\phi^M, \psi)$ w/out cross-modal KL losses	X	1.080	1.071	0.107	1.095	0.453	0.452	0.005	0.456
Transf.	$KL(\phi^T, \psi) + KL(\phi^M, \psi)$ w/out cross-modal KL losses	√	0.993	0.983	0.105	1.006	0.461	0.460	0.005	0.463
Transf.	$KL(\phi^T, \phi^M) + KL(\phi^M, \phi^T)$ w/out Gaussian priors	✓	1.049	1.039	0.108	1.065	0.472	0.471	0.005	0.475
Transf.	$KL(\phi^T, \phi^M) + KL(\phi^M, \phi^T) + KL(\phi^T, \psi) + KL(\phi^M, \psi)$	√	0.963	0.955	0.104	0.976	0.445	0.445	0.005	0.448

Comparison with previous work

Lin et al.

A person walks two steps, turns around and walks another two steps.

APE root joint error

Human studies

References

- Lin et al. Generating animated videos of human activities from natural language descriptions (NeurIPS Workshop 2018)
- Ahuja et al. Language2Pose: Natural language grounded pose forecasting (3DV 2019)
- Ghosh et al. Synthesis of compositional animations from textual descriptions (ICCV 2021)